
Toward Scooping In Robotics
Martin Chan
MIT EECS

Cambridge, MA
martinch@mit.edu

Fiona Gillespie
MIT EECS

Cambridge, MA
fgillesp@mit.edu

Hannah Kim
MIT Economics
Cambridge, MA

hann@mit.edu

Abstract—In this paper, we investigate the ability of a fixed
robot arm to reliably scoop granular objects from one selected
bin to another. Scooping has the potential to increase the range
of object sizes and shapes that a robot arm can interact with,
but it is a largely unexplored application in robotics. We build
on existing work in grasping and pick-and-place tasks, focusing
instead on a scooping motion to pick up multiple smaller granular
objects at once. We develop a full-stack system for an iiwa robot
arm that can be directed to scoop granular spherical objects
from one bin to another using a scoop that is welded directly
to the end of the arm. This work primarily focuses on using
pre-planned trajectories, but in the future, live feedback could
be incorporated through vision systems or sensor suites. Our
system is able to reliably scoop 3 spheres from the first to the
second bin, using both a geometric and teleop playback approach
to create pre-planned trajectories.

I. INTRODUCTION

Going into this project, we wanted to explore everyday
applications of robotic manipulation, such as in a household
kitchen. We chose scooping, or the act of picking up and mov-
ing something with a scoop, as an interesting, common action
that seemed to be largely unexplored in robotics academia, as
opposed to pick-and-place actions with a gripper. Our initial
goal was to have an environment setup where a robot could
be directed to scoop a given volume of a granular good (such
as beans, rice, and maybe flour) to move it from one bucket
to another using a measuring cup, ladle, or spoon.

We expected to have to re-scope as we discovered the
limits of our own (and Drake’s) abilities as beginners to the
tech stack. We did this very early on, as our initial project
proposal explored the mechanics of chopping carrots. After
receiving technical feedback on the scope of this project, we
reoriented ourselves to scooping so as to avoid having to deal
with fracture mechanics and otherwise dynamically recreating
meshes. In particular, we received a suggestion to try and
replicate an existing strategy of pre-computing trajectories and
playing them back according to the state of the bin being
scooped from. Although we didn’t manage to automate our
trajectory selection, we set up

The main technical problems we expected to encounter with
scooping were in the modeling of contact forces between the
objects being scooped and the scoop itself, as well as creating
the scooping trajectories the robot arm would be following.

6.4210 Robotic Manipulation

II. PRIOR WORK

There is a growing field of robots in kitchen applications,
such as with Dexai Robotics’s Alfred (dexai.com/meet-alfred),
which has scooping capabilities. The Toyota Research Institute
(TRI) has also done work on food preparation, including
simulations with hydroelastic modeling of spatulas scooping
up carrot-like objects (and other shapes) off a table. Spyce, a
Boston-based startup by MIT graduates, operated a restaurant
in Boston with a robotic kitchen. They’ve since been acquired
by sweetgreen.

To the best of our knowledge, there is no existing academic
publication on scooping with a concave tool by robots. The
closest we could find was Scooping Manipulation Via Motion
Control With a Two-Fingered Gripper and Its Application to
Bin Picking, a paper published July 2021 [1] which examined
the act of scooping a small flat object (such as a coin) off a
table with a thin flat spatula.

We were told by Russ Tedrake that some prior approaches to
scooping involved pre-computing appropriate trajectories for
different bin states (such as empty, half-full, full) then using
perception to determine which trajectory to select. This was
the direction that we hoped to bring our project, though we
did not get far enough for the perception selection process.

III. APPROACH

A. Overview

Fig. 1. Environment setup: iiwa arm, scoop, bins, and objects being scooped.

Our environment setup, shown in Fig. 1, consists of the
robot arm doing the scooping, the objects being scooped, and

https://www.dexai.com/meet-alfred
https://ieeexplore.ieee.org/document/9470942
https://ieeexplore.ieee.org/document/9470942
https://ieeexplore.ieee.org/document/9470942


the bins holding the scooped objects. Having worked almost
exclusively with the iiwa arm for class assignments, we chose
to use the Kuka LBR iiwa robot arm, a 7-axis robot arm with
joint-torque sensors in all axes and relatively robust support
in Drake.

We decided to try an approach suggested to us in the first
project check-in where we pre-compute trajectories and choose
them to execute. Although we wanted to try to get a perception
module to choose from trajectories automatically based on the
state of the bin, we only had enough time to save and execute
trajectories manually.

We used two parallel approaches to create our trajectories.
One approach was geometric using an approach similar to the
robot painter from the class homework, where we first encoded
key poses from a semi-circle then interpolated them, adjusting
parameters (like radius) manually based on what we saw in
the simulator [2]. The second approach was to teleop-record,
marking down key poses along the way, then exporting those
key poses for later reuse. We improved our teleop-recording
process from simply printing the pose every couple seconds,
to printing the pose on command [, to registering poses then
exporting the corresponding Python code in text, to exporting
the poses as code.]. Because we knew our work would be
iterative, we tried to place special focus on tools that would
help us in development.

One of our issues with our project was the slowdown from
our need to simulate many bodies (upwards of 150 spheres) in
order to have a convincing amount of substance to scoop. To
that end, we tried two approaches: one, we changed our contact
solver from Tamsi to Sap (upon Russ’s recommendation), and
we also reserved our full-bin simulation for integration tests
only. While we would’ve liked to use a full-bin for testing our
initial trajectories, it would take impractically long to simulate
the full set of bodies as part of our main iterative process. Our
pre-planned trajectories still performed well on the full-bins
during testing, despite being planned with fewer spheres.

B. Environment Setup

To create the environment shown in Figure 1, we needed
to choose a model to be our scooper. We decided to use a
measuring cup as the scoop so that it would have edges (we
were a bit worried about the objects falling off the side of
the spatula) [3]. We used the mesh-to-sdf-converter from the
Authoring Multi-Body Plant tutorial to create the collision
geometry for our measuring cup [4] [5]. As we progressed
in the project, we also experimented with the right scoop size
for our set-up. Our initial scoop was too large to properly fit
in the bin, but we wanted a large enough scoop that we could
have

Welding an imported scoop to the end of our iiwa arm
avoided the added complexity of directing the iiwa arm to
grip a scoop. Both this and our bins of spheres were added
through model directives.

Our first trials used small rectangular bricks as the objects
to be scooped, but we eventually transitioned into using
spheres due to simpler collision geometry, which significantly

improved the simulation speed with a visually comparable
number of objects. Combined with a faster contact solver and
a meshcat update that got pushed out during our development
process, we saw huge improvements in our simulation runtime.
Still, there’s a tension between having few enough objects in
the environment to quickly simulate, and enough objects so
that the simulation can both reliably scoop and look impressive
while doing it. To make testing feasible, especially for initially
saving our trajectories, we teleoperated in an environment with
either no spheres or as few spheres as possible.

We can still use these trajectories in simulation with many
objects as long as there are enough objects to act roughly like
a fluid. If the scoop could only fit a single ball, then we can’t
guarantee that a saved trajectory that was recorded successfully
scooping a sphere would do it again with a different random
configuration of spheres. Most of our trials use 50 or fewer
objects, since it is about O(n2) time to simulate n objects.

One of the most important parts of environment setup is
actually placing the objects into the world. All objects ”spawn”
at the origin at the start of the simulation, and move into their
starting poses as the simulation proceeds. Poses and welds for
our bins, iiwa arm, and scoop are all defined in the model
directives for the environment. For the spheres, their initial
position is suspended above the bins (shown in Fig. 2), and
then they fall into the bin as the simulation proceeds as seen
in Fig. 1.

Fig. 2. Environment before simulation begins advancing and balls fall.

C. Spatial Context

Before going deeper into our approach, we would first like
to cover some relevant context about how to think about
trajectory planning with geometry.

Our iiwa has a lot of capability with its 7 degrees of
freedom. If we know where we want the scoop to be, how
do we tell the iiwa to do that? This is where frames become

https://grabcad.com/library/customizable-coffee-scoop-1
https://github.com/gizatt/convex_decomp_to_sdf
https://deepnote.com/workspace/Drake-0b3b2c53-a7ad-441b-80f8-bf8350752305/project/Tutorials-2b4fc509-aef2-417d-a40d-6071dfed9199/notebook/authoring_multibody_simulation-94c2df76148443f6b3aa76f9fa5a3d32


useful. Frames are a way to abstract out some of the geometric
complexity, and just focus on the location of some important
elements in our system. We can define the world frame as the
”center” of our system and the origin for all other definitions. It
is also very useful to have a scoop frame, which lets us define
a new coordinate frame located at the cup of the scoop. Then,
instead of having to worry where the scoop is with respect to
the origin, we can just decide what location and orientation
we want the scoop to be, in the scoop coordinate system.
The scoop frame’s origin can be defined by a translation and
rotation with respect to the world frame. Fig. 3 shows us
both the scoop frame, located in the cup of the scoop, and
the world frame, extending out of the iiwa arm base. Having
a scoop frame is especially helpful for geometric reasoning
about which direction we want the handle of the scoop, or
which way the open face of the scoop should point.

Fig. 3. The scoop frame can be seen inside the cup. The x-axis (red) is
aligned with the scoop’s handle, the y-axis (green) is aligned with the right
side of the scoop, and the z-axis (blue) is aligned with the open face of the
scoop. The world frame is shown at the base of the robot

Another important geometric concept is a pose, which just
describes a position and rotation of an object. When we
have a desired scoop pose in the scoop frame, we can use
the pose of the scoop frame’s origin to convert back into
world frame as well. To learn more about frames, poses,
and transforms, see the corresponding sections from the Basic
Pick and Place chapter of the Robotic Manipulation textbook
[2]. Now that we have covered some background, we will
discuss our two trajectory planning approaches in depth in the
following sections. We developed both of these approaches in
parallel to scoop from one bin and pour the spheres into the
other bin.

D. Geometric Trajectory Approach

Our first approach investigates planning a scoop and pour
trajectory by estimating each motion as part of a simple
geometric shape.

1) Geometric Scooping: Scooping roughly looks like mov-
ing in a semicircle, so we used this as our starting point. Using
the scoop frame, our first goal was to create a semicircular
sequence of key frame poses we would like the scoop to
move through. Instead of defining every single pose that the
scoop is in, we can actually generate just a few poses, and
use interpolation to fill in the rest. The basic idea behind
interpolation is connecting the dots between our key frame
poses. Since we are moving in a circle in 3D space, we use
spherical interpolation to best represent what happens between
our key frame poses. Fig. 4 shows a sequence of circular key
frame poses. There are 10 to make it extremely clear what the
path would be, but the trajectory could still work well with a
smaller number of frames.

Fig. 4. A circular path of 10 key frames

In order to create this circular trajectory, we referenced the
robot painter notebook from the Basic Pick and Place chapter
of the course textbook [2]. As one of our assignments during
the course, we created a function to compose circular key
poses (given a list of angles, the pose of the center of the
circle, radius of the circle, and where the arm starts from).
This function creates a transformation for each of the angles:
the rotation is determined by the angle, and the position moves
away from the center in the rotated radial direction. This
transformation can then by applied to the center of the circle
to create a new key pose on the circle. To verify that the
trajectory is as intended, it is very useful to visualize the key
pose. This visualization is how the key poses are displayed in
Fig. 4.

Once we have the key frame poses, the final step is com-
manding the scoop to be in these poses. The process of going
from poses to joint angles is known as inverse kinematics.
Since we would like to move to a pose, we need to learn
how changes in a pose affect the joint angles. This makes the
process rely on derivatives, or differential inverse kinematics
[2]. We used a differential inverse kinematics solver frame

https://manipulation.csail.mit.edu/pick.html#monogram
https://manipulation.csail.mit.edu/pick.html#monogram


class. We passed this solver the scoop frame as its reference
frame, and then it controls the iiwa to manipulate joints such
that the scoop lines up with the commanded trajectory. After
this, all that’s left is tuning the trajectory!

As a brief recap, here are the 5 main steps to create the
geometric scoop trajectory:

1) define scoop frame
2) create circular key frame poses
3) visualize key frames
4) solve for joint angles with differential inverse kinematics
5) tune trajectory
Once the basics of this geometric approach were imple-

mented, the next step was reviewing the scoop performance
and making adjustments as needed. The circular trajectory
from Fig. 4 made a decent attempt of scooping the spheres,
but sometimes struggled with being able to interact and pick
up the spheres (they can get pushed away by the scoop).

For extra flexibility, we created an elliptical key frames
function. Instead of a radius, this function requires the lengths
of the semimajor axis and semiminor axis. Now, we had much
more control over our trajectory, and we could get the scoop
closer to the bottom of the bin (shown in Fig. 5). Note how
different the edges of the elliptical path key frames in Fig. 5
are from the circular path key frames in Fig. 4.

Fig. 5. An elliptical path of 10 key frames

2) Geometric Pouring: After we created a scoop trajectory,
the next step was creating a trajectory to pour the spheres into
the other bin. Once the spheres are already in the scoop, we
have to be more careful about how we command the scoop
so we don’t drop our spheres. In addition, there were some
limitations in terms of which poses the arm could reach as
well. Sometimes it seemed like two key frames would be easy
to go between, but the solver would get stuck. After trial and
error, we created the trajectory shown by key frames in Fig.
6.

After finishing the first scoop, we added a key frame to
ensure the z-axis of the scoop stays upwards, as shown in

Fig. 6. The entire scooping and pouring process visualization. Right: scoop
path. Left: pour path

Fig. 7. This helps the scoop avoid tipping and dropping the
spheres).

Fig. 7. The key frame on the left keeps our scoop upright so that we don’t
drop any of our spheres

This current visualization of key frames we use for the
pouring motion is displayed in Fig. 8. It was easiest for the
iiwa to pour from the left side of the bin. When the key frames
commanded the right side of the bin, the arm moved around
unhappily.

E. Teleop Record Details

Early in the project, we determined that a solid starting
point for our system would be to use pre-computed trajectories.
While our ideal system would either not be teleoperated at all
(if we managed to get to a perception system) or teleoperated
only on a very high level (by trajectory, not by pose or joint
commands), we wanted to explore using teleop as a way of
creating trajectories. For that, we needed a way to save and
playback teleop trajectories across simulation runs.

This approach gave us two things. First, playback removes
the need for the robot to compute a new trajectory with every
scoop. Second, it also allows us to test quicker since the
addition of the scooping objects dramatically increases the
simulation time.



Fig. 8. The scoop pours the spheres into the bin from the left side. This
trajectory was created with trial and error

We began by setting up our teleop environment to use pose
sliders on the last link of the iiwa. We could have instead
used pose on the scoop, but we decided that using this pose
was both easier to implement and allowed for a more human-
like scooping motion (intuitively, we scoop centered from our
wrist, not the head of the scoop!) We could have also instead
used joint sliders, but teleop comes more naturally to us with
poses.

Once we got the teleop to successfully scoop spheres
manually, we began considering how we could build our
trajectory from teleop. Our naive approach was to first print
out poses (e.g. RigidTransform(RotationMatrix(0,
0, 0), [0, 0, 0])) in the code output box whenever
we pressed a ”Print Pose” button. The idea was to put all
these printed poses into a code block that we would execute to
create a trajectory object. This seemed inefficient, so we then
investigated how to save all the poses for a given trajectory
through files.

We later created a SlidersMemory Python class that
would maintain the history of poses for the robot during a
simulation and respond to a ”Save Poses” button that would
write them to file. Our file representation was a text file with
a 6-tuple on each line representing each pose’s 6 parameters
(3 for rotation, 3 for position). The idea was that a trajectory
should be reproducible by saving the poses from a teleop in
a particular way and playing them.

We needed to decide which poses to save. Initially, we
thought to have each pose differ from adjacent poses by only
one value, representing a single slider changing. The idea was
that we would operate only one slider at once, and that we
would be able to play back faster than we made the trajectory,
since we might slowly change one slider during sensitive parts
of the movement like aiming the scoop.

Further testing showed that we often teleop using two sliders
at once, like a rotation and a position in the case of the
actual scooping and dropping process, so we needed to change

our pose saving strategy. We switched to saving the pose by
time step instead, but we still needed to manually clean up
our trajectory files to make them smoother played back. We
suspect that some further work on which poses to save and
recovering trajectories from saved poses can make the replay
more reflective of the original teleop.

The main components to using the teleop record for future
automatic playback are in cleaning up the teleop path, reading
the files they’re stored in, and actually moving the iiwa arm
based on the information read. A single trajectory file will
usually hold an ordered list of desired poses for the iiwa.
Often there are more than a few unnecessary movements in
a single file, and so (barring more robust write conditions)
some manual cleaning is desired to create smoother trajecto-
ries. In addition, deleting and adjusting poses can help with
resolving issues from the iiwa getting “stuck” or having joints
that are fully extended. The files are parsed to create paths
based on movements between poses, rather than the positions
themselves. The iiwa can then be directed to execute these
movements, whether it is just once or on loop.

This execution is not necessarily teleop at all, but simply a
pre-computed path that has been passed into the iiwa arm. In
some cases it was computed from a teleop trajectory, in other
cases just manually created, and could even come from the
geometric scooping approach.

Being able to play any given path yielded some key lessons
for our trajectory planning and environment simulation. It
matters a lot what the previous position of the robot is; the
robot put in the same location and rotation positions look very
different coming from two different previous positions. We
found significant value in having moves along multiple axes
at the same time, especially as the actual ”scooping” motion
is deceptively complex.

F. Challenges and Learning Experiences

Some of the toughest parts of the project weren’t directly
related to robots, but had more to do with the development
process in general.

We partially set up a version control system through Git,
but did not use it or branches as liberally as we should have.
Instead, our best version control was an ad hoc system of
copying files and using Deepnote’s native autosave and revert
tools. This proved to be unfortunate during the debugging
process and also led to us having way more notebooks than
we were using at a single time.

Some debugging was tough. We made a change to our scoop
sdf later in testing that broke our universal environment. It
took an hour for us to figure out that it had come from an
effort to make the scoop lighter that inadvertently had made it
heavier. To try and fix it, we reverted our notebooks to the last
known working version, but Deepnote’s history only tracks the
notebooks, which the scoop sdf file was not part of.

Since our project requires importing a scooper object,
we were surprised by the difficulty of setting up the
package.xml and other boilerplate necessary to import it



into the simulation. It ended up being simple to put in, but we
couldn’t figure it out on our own before asking for help.

This project was also our first time really working through
understanding all the code that goes into running a Drake sim-
ulation. We had an early hurdle figuring out how to adjust our
code to accommodate the MakeManipulationStation
versus MultibodyPlant, though it was a major help having
sample code from the textbook for some parts. It is a very
different experience just reading the code that sets up the psets,
compared to actually having setting up our own simulation
with custom files. Another hurdle was knowing how to modify
the controller plant since we were not using the gripper
(big thank you to Russ for the individual help on that!). In
hindsight, the setup does make a lot of sense, but it was a
process to really understand what was going on the first time
through.

For some parts, the documentation wasn’t much help, but we
often looked through some Drake source code on classes like
MakeManipulationStation on Github to try and see
how we could implement the things we wanted to implement.

It became quite time-consuming to work in the simulation
environment once there were a large number of objects within
the environment. Even after updating to use the SAP contact
solver, which is faster than the default meshcat contact solver,
we found that increasing the number of objects getting scooped
slowed down the simulation significantly, such that it could
take nearly 10 minutes with 50 spheres to simulate just one
or two scoops. This became a pretty strong constraint for
how we thought about the granularity of poses in a single
trajectory–too few poses, and the arm would not be able to
fully execute a scoop; too many poses, and the simulation
would take unreasonably long.

IV. RESULTS AND DISCUSSION

A. Geometric approach

Preliminary results of the elliptical scoop and quarter circu-
lar pour were very promising. Trajectories were planned first
without spheres and then tested with approximately 50 spheres.
The quantity of spheres significantly slows down the runtime
of the simulation. This trajectory reliably picked up and poured
3 spheres from the bin of 50. Fig. 9 shows the environment
after a successful scoop and pour.

While picking up the 3 spheres, several spheres were also
pushed out of the bin and into the world. When the same tra-
jectory was tested with only 30 spheres, it did not successfully
pick any up. This trajectory needed enough spheres in the bin
to be able to scoop some off the time - if there were only
30 spheres they could easily be pushed out of the way by the
scoop. It is likely that this trajectory would work with more
than 50 spheres, but would not generalize well to an emptier
bin. We did not do much testing on successive scoops, but it
would likely work if the bin is still full enough. As the current
trajectory does lose some spheres to the floor on every scoop,
it would be better to fine-tune this trajectory before performing
subsequent scoops.

Fig. 9. The geometric approach reliably scoops and pours three spheres from
one bin to another, when starting with 50 spheres.

The main hurdle in setting up the geometric trajectory was
initially performing inverse kinematics on the last link of the
iiwa. However, this was unintuitive for creating key frames.
Once we correctly set up a frame for the cup of the scoop
within the scoop sdf and ran inverse kinematics on the cup,
the geometric planning worked much better (big thank you
again to Russ for advice on this!).

It was an interesting learning experience trying to set up
the pour following the scoop. The first attempt had the scoop
move to the corner between the bins, which is on the right side
of the bin to pour into. However, the iiwa kept getting stuck
and could not pour from this side. So, the next attempt had
the scoop move around from the right bin counterclockwise to
the left side of the left bin. It seemed like it would be helpful
to put the scoop close to where the pour trajectory would
start. However, the iiwa would get stuck once again. It turned
out that the iiwa was actually happiest letting the interpolation
handle the movement between finishing a scoop and moving to
pour the spheres into the next bin. The attempted intermediate
frames made it harder for the iiwa to perform the pouring.
This was an interesting result that we were not expecting when
creating the path. Perhaps it makes sense to require as little
as possible, and let the iiwa have freedom to move whenever
it can.

B. Teleop Playback

The process of generating our scooping trajectories was
fairly user-friendly. Our teleop setup is shown in Fig. 10

We used the keyboard for teleop, which works smoothly
with only a little bit of practice. To save, we just press a
button and the trajectory is saved to a file. The goal was
to make creating a trajectory as easy as doing teleop for
that trajectory, which we made mostly true with our tooling,
though some manual cleaning is necessary to smooth out some
trajectories. We expect some further work on the trajectory file
representation on both saving and playback to remove the need



Fig. 10. Our teleop allows the user to control the pose of the scoop via joint
sliders. There are also buttons to save poses and reset the trajectory.

for manual cleaning and to make creating reusable trajectories
even more user-friendly.

We got strong results playing back precomputed trajectories.
Like with the geometric approach, trajectories were tested first
without spheres and then with approximately 50 spheres. This
trajectory reliably picked up 2-3 spheres (depending on how
they had landed) from a bin of 50, and poured them into the
neighboring bin. The iiwa would usually push a couple spheres
were also pushed out of the bin and into the world. After the
first scoop, the iiwa can usually get 1-2 spheres, but struggles
more with this as the bin depletes.

C. Discussion of both approaches

While the geometric approach creates relatively smooth
trajectories, navigating the bin environment proved difficult.
The teleop approach creates much more flexibility and can
quickly plan trajectories to new situations. The geometric
approach instead requires careful planning ahead of time,
but creates potentially smoother or more elegant trajectories,
especially if an optimal ”shape” of the trajectory is known.

We expect that the scooping performance should improve
as objects get smaller in relation to the scoop. When there
are many small spheres rather than fewer large spheres, the
scooping action relies less upon the specific configuration of
spheres in the bin. Asymptotically, we expect our system to
work better as the scoopable objects in the bin approach a
fluid. However, more objects (and contact surfaces) require
more time to simulate.

The main bottleneck in our simulation environment is
having to simulate all the little objects in the bins. If we had
a physical robot, we could more easily perform tests of our

precomputed trajectories with full bins. However, even outside
of testing with full bins, we had reason to believe that the
robot should behave similarly whether it was moving through
air with an empty bin or scooping with a full bin, since our
robot’s controller will perform the forces necessary to achieve
the given poses.

V. CONCLUSION

This was just a first step towards the larger area of scooping
and kitchen applications for robotics. This can be extended
further in the perception and planning problem of determining
more precisely how the robot should scoop and how the robot
figures out whether it has scooped enough (such as with
a feedback loop if pre-planning is insufficient). This could
include cameras or other sensors (force, position, weight) that
could inform which saved trajectory the robot should execute.
Another few key areas are expanding what objects can be
scooped and in what quantities. There could be a planning
stage of selecting the correct scooper for the desired quan-
tity. Adding deformable or more realistic food-related objects
would be a significant step towards the kitchen application.
Our scope for this project was limited, but we hope that our
work as a preliminary introduction to this topic can set a
foundation for future work in scooping.

VI. TEAM CONTRIBUTIONS

The work was split rather evenly, and we largely developed
the project during our team work sessions. The sections of this
report corresponding to each member’s work were generally
written by that member. A break down of individual member
contributions will follow.

Martin

Martin focused on initial environment setup with the ma-
nipulation station and welding the scoop to the iiwa, setting up
teleop on the scoop, and making tools for the teleop recording
and playback. He also periodically refactored the code to make
development smoother and tinkered with parameters (e.g.
using the Sap discrete contact solver) to improve performance.

Before we began teleop recording and playback, Martin
set up the model directives, MakeManipulationStation,
and pose teleop to check that scooping was feasible. Once that
was done, he began setting up our interface to allow saving a
series of poses from Meshcat using the slider values. Initially,
the system exported poses one at a time to the code block
output as executable code that we would manually load in, but
he then designed our SlidersMemory module and interface
to internally track key poses and write to file using a button
inside Meshcat.

Martin designed our trajectory file representation as lines of
6-tuples that represent the roll, pitch, yaw, x, y, and z for each
pose, but left an interface open for us to decide which poses
to automatically save. One of his focuses was producing clean
code that was easy for both him and teammates to use and
iterate on.



Fiona

Fiona focused on setting up the scoop in the system and
developing the geometric scooping approach. Setting up the
scoop included creating several sdfs of various size to exper-
iment with which worked well for the other elements of our
setup - specifically with the number of spheres and the sizes
of the bins. It is also very important that the scoop has a
convex collision geometry for ease of simulation. To this end,
the mesh → sdf converter was used [4].

After system setup, Fiona worked on the geometric ap-
proach of creating and commanding the scoop trajectory.
During the course of this development, there were several
key issues to address. The first was which inverse controller
to use: Fiona began with the pseudo-inverse controller from
the robot painter notebook but it was no longer able to plan
sufficiently when the bins and spheres were added. Fiona
looked into other approaches with the differential inverse
kinematics controller and adding the scoop to the controller
plant. The other main issues were successfully setting up
a modified manipulation station that included the scoop in
the controller plant, and creating a cup frame in the scoop
sdf. Once this was addressed, the geometric approach yielded
very promising results, especially from the elliptical path in
scooping and circular path in pouring. This work provided
a great opportunity to dive deeper into the design process of
developing simulations and creating the right path to a solvable
problem.

Hannah

During setup, Hannah focused on building and integrating
the features that the arm interacted with, such as the bins
and objects to be scooped, and ensured that the simulated
environment still ran at a reasonable speed. Early on, her focus
was largely on integrating custom-built objects and packages
with the environment. She created an importable standard
environment for use in the many new notebooks created,
allowing any environment changes to percolate through all
simulations being attempted. After encountering speed and
complexity issues associated with simulating and visualising
150+ bodies, she moved the project from scooping rectangular
bricks to scooping spheres, which have much less computa-
tionally intensive collision geometries.

Afterwards, Hannah’s main focus went towards using teleop
to learn and then create functional scooping motions. Her
work, initially a part of the SlidersMemory class, allows users
to pass in a path of desired positions for the iiwa arm to
progress through. Hannah built ways to read and use the output
from the teleop export tooling Martin had created, so that
the arm could “play back” both previous teleop paths and
completely new paths. This yielded promising results, and
allowed her to develop points for a potential trajectory that
would eventually become the successful scooping trajectories
presented.

VII. ACKNOWLEDGMENT

We would like to thank the 6.4210 staff for their support
throughout lectures, recitations, office hours, and Piazza posts.
We would especially like to express our appreciation for the
last minute project office hours added in the last week. They
were immensely helpful during this last stretch of the project.

VIII. REFERENCES

A. Links to Code and Demo

Github Repo with objects used in environment setup:
github.com/redhann/scooping

Deepnote Workspace with notebooks:
https://deepnote.com/workspace/64210-d4bf-68e62101-
1cf0-430c-b693-4c10ca0f2662/project/64210-
Scooping-0ae32ff5-ed5c-4c6e-a728-
d5dde2803bd2/notebook/Guide%20to%20Scooping%20Project-
be993360026a4b4a9ec1fefbd9eac6bf. Start with the Guide to
Scooping Project notebook for our presentation, videos of
scooping, and an explanation of relevant notebooks.

For any questions, please contact the authors at scoop-
ing@mit.edu.

REFERENCES

[1] T. He, S. Aslam, Z. Tong, and J. Seo, “Scooping manipulation via motion
control with a two-fingered gripper and its application to bin picking,”
IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6394–6401,
2021.

[2] R. Tedrake, Robotic Manipulation, 2022. [Online]. Available: https:
//manipulation.csail.mit.edu/pick.html

[3] O. Grossman. Customizable coffee scoop. [Online]. Available: https:
//grabcad.com/library/customizable-coffee-scoop-1

[4] Gizatt. Mesh-to-sdf converter. [Online]. Available: https://github.com/
gizatt/convex decomp to sdf

[5] R. Tedrake. Authoring a multibody simulation.
[Online]. Available: https://deepnote.com/workspace/
Drake-0b3b2c53-a7ad-441b-80f8-bf8350752305/project/
Tutorials-2b4fc509-aef2-417d-a40d-6071dfed9199/notebook/authoring
multibody simulation-94c2df76148443f6b3aa76f9fa5a3d32

https://github.com/redhann/scooping
https://deepnote.com/workspace/64210-d4bf-68e62101-1cf0-430c-b693-4c10ca0f2662/project/64210-Scooping-0ae32ff5-ed5c-4c6e-a728-d5dde2803bd2/notebook/Guide%20to%20Scooping%20Project-be993360026a4b4a9ec1fefbd9eac6bf
https://deepnote.com/workspace/64210-d4bf-68e62101-1cf0-430c-b693-4c10ca0f2662/project/64210-Scooping-0ae32ff5-ed5c-4c6e-a728-d5dde2803bd2/notebook/Guide%20to%20Scooping%20Project-be993360026a4b4a9ec1fefbd9eac6bf
https://deepnote.com/workspace/64210-d4bf-68e62101-1cf0-430c-b693-4c10ca0f2662/project/64210-Scooping-0ae32ff5-ed5c-4c6e-a728-d5dde2803bd2/notebook/Guide%20to%20Scooping%20Project-be993360026a4b4a9ec1fefbd9eac6bf
https://deepnote.com/workspace/64210-d4bf-68e62101-1cf0-430c-b693-4c10ca0f2662/project/64210-Scooping-0ae32ff5-ed5c-4c6e-a728-d5dde2803bd2/notebook/Guide%20to%20Scooping%20Project-be993360026a4b4a9ec1fefbd9eac6bf
https://deepnote.com/workspace/64210-d4bf-68e62101-1cf0-430c-b693-4c10ca0f2662/project/64210-Scooping-0ae32ff5-ed5c-4c6e-a728-d5dde2803bd2/notebook/Guide%20to%20Scooping%20Project-be993360026a4b4a9ec1fefbd9eac6bf
https://manipulation.csail.mit.edu/pick.html
https://manipulation.csail.mit.edu/pick.html
https://grabcad.com/library/customizable-coffee-scoop-1
https://grabcad.com/library/customizable-coffee-scoop-1
https://github.com/gizatt/convex_decomp_to_sdf
https://github.com/gizatt/convex_decomp_to_sdf
https://deepnote.com/workspace/Drake-0b3b2c53-a7ad-441b-80f8-bf8350752305/project/Tutorials-2b4fc509-aef2-417d-a40d-6071dfed9199/notebook/authoring_multibody_simulation-94c2df76148443f6b3aa76f9fa5a3d32
https://deepnote.com/workspace/Drake-0b3b2c53-a7ad-441b-80f8-bf8350752305/project/Tutorials-2b4fc509-aef2-417d-a40d-6071dfed9199/notebook/authoring_multibody_simulation-94c2df76148443f6b3aa76f9fa5a3d32
https://deepnote.com/workspace/Drake-0b3b2c53-a7ad-441b-80f8-bf8350752305/project/Tutorials-2b4fc509-aef2-417d-a40d-6071dfed9199/notebook/authoring_multibody_simulation-94c2df76148443f6b3aa76f9fa5a3d32
https://deepnote.com/workspace/Drake-0b3b2c53-a7ad-441b-80f8-bf8350752305/project/Tutorials-2b4fc509-aef2-417d-a40d-6071dfed9199/notebook/authoring_multibody_simulation-94c2df76148443f6b3aa76f9fa5a3d32

	Introduction
	Prior Work
	Approach
	Overview
	Environment Setup
	Spatial Context
	Geometric Trajectory Approach
	Geometric Scooping
	Geometric Pouring

	Teleop Record Details
	Challenges and Learning Experiences

	Results and Discussion
	Geometric approach
	Teleop Playback
	Discussion of both approaches

	Conclusion
	Team Contributions
	Acknowledgment
	References
	Links to Code and Demo

	References

